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Tutorial 3

Sum of combinatorial games

Let G1, · · · , Gn be n combinatorial games. Let G denote their sum. Let

g1, · · · , gn be the S-G functions of G1, · · · , Gn respectively and let g be the

S-G function of G.

Proposition 1.

g(x1, · · · , xn) = g1(x1)⊕ · · · ⊕ gn(xn).

Exercise 1. Consider the following 3 games.

G1: 1-pile nim.

G2: Subtraction game with S = {1, 2, 3, 4, 5, 6}.

G3: When there are n chips remaining, a player can remove only 1 chip if

n is odd and can remove any positive even number of chips if n is even.

Let g1, g2, g3 be the S-G functions of the 3 games respectively. Let G denote

the the sum of G1, G2, G3 and let g be the S-G function of G.

(i) Find g1(14), g2(20), g3(24).

(ii) Find g(14, 20, 24).

(iii) Find all winning moves of G with position (14, 20, 24).

Solution: (i) Since G1 is 1-pile nim, we have g1(n) = n for all n, hence

g1(14) = 14. Since G2 is subtraction game with S = {1, 2, 3, 4, 5, 6}, we

have g2(20) = 6 since 20 ≡ 6(mod7). To find g3, by backwards induction,

we have

k 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

g3(k) 0 1 1 0 2 0 3 0 4 0 5 0 6 · · ·
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Hence we have

g3(k) =


1 if k = 1

0 if k ≥ 3 and k is odd

k
2

if k is even

Hence g3(24) = 12.

(ii) By (i), we have

g(14, 20, 24) = g1(14)⊕ g2(20)⊕ g3(24) = 14⊕ 6⊕ 12 = 4.

(iii) Since

14⊕ 6⊕ 12 =

(1, 1, 1, 0)2

(0, 1, 1, 0)2

(1, 1, 0, 0)2

(0, 1, 0, 0)2 =4

.

All winning moves are: choosing G1 and removing 4, or choosing G2 and

subtracting 4, or choosing G3 and removing 4 chips.

Two-person zero-sum games

Definition 1. A game is called a two-person zero-sum game if

(i) Two players make their moves simultaneously.

(ii) One player wins what the the other player loses.

Strategic form

Definition 2. A strategic form of a two-person zero-sum game is a triple

(X, Y, π), where X, Y are the sets of strategies of Player I and Player II

respectively, and π : X × Y → R is the payoff function of Player I.

In this note, we only consider the case that both X and Y are finite, so that

we can identify the payoff function as a matrix.
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Matrix game

Assume X = {1, · · · ,m}, Y = {1, · · · , n} are the sets of strategies of Player

I (the row player) and Player II (the column player) respectively. Let A ∈

Mm×n(R) be the payoff matrix, that is, ai,j denotes the payoff of the the row

player when the row player takes his strategy i and the column player takes

his strategy j.

Pure strategy: If A has a saddle point ak,l, that is

ak,l = min
1≤j≤n

ak,j = max
1≤i≤m

ai,l,

then the row player has an optimal pure strategy k and the column has an

optimal pure strategy l.

Mixed strategy: Let Pm denote the collection of p dimensional probability

vectors. We call each probability vector p ∈ Pm a mixed strategy for the

row player. Similarly, each q ∈ Pn is called a mixed strategy for the column

player.

Theorem 2. (Minimax Theorem). Let A be an m× n matrix. Then there

exist a number v ∈ R and two probability vectors p ∈ Pm, q ∈ Pn such that

(i) pAyT ≥ v for any y ∈ Pn.

(ii) xAqT ≤ v for any x ∈ Pm.

(iii) pAqT = v.

Remark: (1) The number v in the above theorem is unique, and we call it

the value of A, write v = v(A).

(2) In the above theorem, we call p an optimal (mixed) strategy for the row

player and q an optimal (mixed) strategy for the column player. In general,

p and q may not be unique.
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(3) If v = 0, we say this game is fair.

(4) By solving a matrix game, we mean finding the value of matrix A and

optimal strategies for the two players.

Exercise 2. Show that the number v in the Minimax Theorem is unique.

Proof. Suppose two triples (v,p, q), (v′,p′, q′) both satisfy (i), (ii), (iii) in

the Minimax Theorem. Note that by using (i), (ii) several times, we have

v ≤ pAq′T ≤ v′ ≤ p′AqT ≤ v.

Exercise 3. Prove if AT = −A, then v(A) = 0.

Proof. Write v(A) = v. Assume p, q ∈ Pn are optimal strategies. Then

by the Minimax Theorem, we have
pAyT ≥ v, ∀y ∈ Pn.

xAqT ≤ v, ∀x ∈ Pn.

pAqT = v.

Taking transpose in the above equations and applying the assumption that

AT = −A, we have 
yApT ≤ −v, ∀y ∈ Pn.

qAxT ≥ −v, ∀x ∈ Pn.

qApT = −v.

By the Minimax Theorem and the uniqueness of the value of A, we have

v = −v, hence v = 0.

Solving matrix games
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Two useful principles: 1. Deleting the dominated rows and columns to

obtain a new matrix with lower dimensions. Recall that a row is dominated

if it is dominated (or say bounded) from above by another row, a column

is dominated if it is dominated from below by another column.

2. The principle of indifference. Assume p = (p1, · · · , pm) and q =

(q1, · · · , qn) are optimal strategies for Player I and Player II respectively.

Then

(i) for any k ∈ {1, · · · ,m} with pk > 0, we have
∑n

j=1 ak,jqj = v(A).

(ii) for any l ∈ {1, · · · , n} with ql > 0, we have
∑m

i=1 ai,lpi = v(A).

Exercise 4. In a Rock-Paper-Scissors game, the loser pays the winner an

amount of money which is equal to the total number of fingers shown by the

two players (for example, if Player I shows Scissors and Player II shows

Paper, then Player II should pay 7 dollars to Player I).

(i) Find the value of the games.

(ii) Find optimal strategies for the two players.

Exercise 5. Let

A =


0 −2 2 1 4

2 −1 3 0 5

3 4 −2 5 −3


(i) Find the reduced matrix of A by deleting dominated rows and columns.

(ii) Solve the two-person zero-sum game with game matrix A.


